Dirac–Coulomb operators with general charge distribution II. The lowest eigenvalue

نویسندگان

چکیده

Consider the Coulomb potential $-\mu\ast|x|^{-1}$ generated by a non-negative finite measure $\mu$. It is well known that lowest eigenvalue of corresponding Schr\"odinger operator $-\Delta/2-\mu\ast|x|^{-1}$ minimized, at fixed mass $\mu(\mathbb{R}^3)=\nu$, when $\mu$ proportional to delta. In this paper we investigate conjecture same holds for Dirac $-i\alpha\cdot\nabla+\beta-\mu\ast|x|^{-1}$. previous work on subject proved self-adjoint has no atom larger than or equal 1, and its eigenvalues are given min-max formulas. Here consider critical $\nu_1$, below which does not dive into lower continuum spectrum all $\mu\geq0$ with $\mu(\mathbb{R}^3)<\nu_1$. We first show $\nu_1$ related best constant in new scaling-invariant Hardy-type inequality. Our main result $0\leq\nu<\nu_1$, there exists an optimal giving possible concentrates compact set Lebesgue zero. The last property shown using unique continuation principle operators. existence proof based concentration-compactness principle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions

In this paper we consider a Robin-type Laplace operator on bounded domains. We study the dependence of its lowest eigenvalue on the boundary conditions and its asymptotic behaviour in shrinking and expanding domains. For convex domains we establish two-sided estimates on the lowest eigenvalues in terms of the inradius and of the boundary conditions. AMS Mathematics Subject Classification: 47F05...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

Interpolation methods to estimate eigenvalue distribution of some integral operators

We study the asymptotic distribution of eigenvalues of integral operators Tk defined by kernels k which belong to Triebel-Lizorkin function space Fσ pu(F qv) by using the factorization theorem and the Weyl numbers xn. We use the relation between Triebel-Lizorkin space Fσ pu(Ω) and Besov space Bτ pq(Ω) and the interpolation methods to get an estimation for the distribution of eigenvalues in Lizo...

متن کامل

Eigenvalue distribution of some fractal semi-elliptic differential operators

We consider differential operators of type Au(x) = u(x) + (−1)t1 ∂ 2t1u(x) ∂x1 1 + (−1)t2 ∂ 2t2u(x) ∂x2 2 , x = (x1, x2) ∈ R2, and Sierpinski carpets Γ ⊂ R2. The aim of the paper is to investigate spectral properties of the fractal differential operator A−1 ◦ trΓ acting in the anisotropic Sobolev space W (t1,t2) 2 (R 2) where trΓ is closely related to the trace operator trΓ . Mathematics Subjec...

متن کامل

Optimization of the Lowest Eigenvalue for Leaky Star Graphs

We consider the problem of geometric optimization for the lowest eigenvalue of the two-dimensional Schrödinger operator with an attractive -interaction of a xed strength the support of which is a star graph with nitely many edges of an equal length L 2 (0;1]. Under the constraint of xed number of the edges and xed length of them, we prove that the lowest eigenvalue is maximized by the fully sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of The London Mathematical Society

سال: 2021

ISSN: ['1460-244X', '0024-6115', '1234-5678']

DOI: https://doi.org/10.1112/plms.12396